[Regulation of GDNF on drug addiction and its mechanism].

Sheng Li Ke Xue Jin Zhan

Published: December 2013

Download full-text PDF

Source

Publication Analysis

Top Keywords

[regulation gdnf
4
gdnf drug
4
drug addiction
4
addiction mechanism]
4
[regulation
1
drug
1
addiction
1
mechanism]
1

Similar Publications

Pancreatic cancer is characterized by an insidious onset and high degree of malignancy, with a 5-year survival rate of less than 11%. Perineural invasion (PNI) is one of the pathological features of pancreatic cancer and provides a pathway for distant tumor metastasis, which leads to a poor prognosis. Although NEAT1 promotes the progression of pancreatic cancer, its impact on PNI has not been studied.

View Article and Find Full Text PDF

Background: Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

The cornea is densely innervated to maintain the integrity of the ocular surface, facilitating functions such as sensation and tear production. Following damage, alterations in the corneal microenvironment can profoundly affect its innervation, potentially impairing healing and sensory perception. One protein frequently upregulated at the ocular surface following tissue damage is galectin-3, but its contribution to corneal nerve regeneration remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!