Gold nanoparticles (AuNPs) have great potential as carriers for local drug delivery and as a primary therapeutic for treatment of inflammation. Here we report on the AuNP-synovium interaction in an ex vivo model of intra-articular application for treatment of joint inflammation. Sheets of porcine femoropatellar synovium were obtained post mortem and each side of the tissue samples was maintained in a separate fluid environment. Permeability to AuNPs of different sizes (5-52 nm) and biomarker levels of inflammation were determined to characterize the ex vivo particle interaction with the synovium. Lipopolysaccharide or recombinant human interleukin-1β were added to fluid environments to assess the ex vivo effect of pro-inflammatory factors on permeability and biomarker levels. The synovium showed size selective permeability with only 5 nm AuNPs effectively permeating the entire tissues' width. This process was further governed by particle stability in the fluid environment. AuNPs reduced matrix metalloproteinase and lactate dehydrogenase activity and hyaluronic acid concentrations but had no effect on prostaglandin E2 levels. Exposure to pro-inflammatory factors did not significantly affect AuNP permeation or biomarker levels in this model. Results with ex vivo tissue modeling of porcine synovium support an anti-inflammatory effect of AuNPs warranting further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879126PMC
http://dx.doi.org/10.4161/tisb.24314DOI Listing

Publication Analysis

Top Keywords

biomarker levels
12
gold nanoparticles
8
fluid environment
8
permeability aunps
8
pro-inflammatory factors
8
vivo
5
aunps
5
vivo gold
4
nanoparticles porcine
4
porcine synovial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!