Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The (photo)physical properties of organometallic complexes are crucially affected by relativistic effects. In a non- or scalar-relativistic picture, triplet states are threefold degenerate. Spin-orbit coupling lifts this degeneracy (zero-field splitting, ZFS) and enables phosphorescence from the three triplet-like states to the ground state. The fine structure and radiative lifetimes of phosphorescent organometallic complexes are important properties for designing efficient organic light-emitting diodes (OLEDs). Here we show that experimental ZFSs and phosphorescent lifetimes for a large variety of organometallic complexes are well reproduced by self-consistent spin-orbit coupling TDDFT (SOC-TDDFT) calculations with a continuum solvation model. By comparing with perturbative SOC-TDDFT and gas phase calculations, we find that both full spin-orbit and solvation effects are important for the predicted properties. SOC-TDDFT is thus shown to be a useful predictive tool for the rational design of phosphors in OLEDs and other optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp55438d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!