We propose an elliptical sub-aperture stitching (ESAS) method to measure the aspheric surfaces. In our method, the non-null configuration is used to overcome the disadvantages of the null testing. By adding the dynamic tilt, the different local nearly null fringe patterns are obtained and the corresponding phase data in the elliptical masks is extracted with negligible retrace errors. In order to obtain the full aperture result, a stitching algorithm is developed to stitch all the phase data together. We firstly show the principle of our method. Then the performance of the proposed method is analyzed by simulation experiments. In the end, practical examples are given to demonstrate the correctness of the proposed method. The stitching result shows a good agreement with the full-aperture null testing result.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.005512DOI Listing

Publication Analysis

Top Keywords

aspheric surfaces
8
elliptical sub-aperture
8
sub-aperture stitching
8
null testing
8
phase data
8
proposed method
8
method
5
non-null testing
4
testing aspheric
4
surfaces elliptical
4

Similar Publications

This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).

View Article and Find Full Text PDF

Estimating the structural and spatial variables of allantoinase enzyme critical for protein adsorption.

Biochem Biophys Res Commun

January 2025

Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India. Electronic address:

Designing enzyme-based sensors necessitates a comprehensive exploration of macromolecular properties. Integrating enzymes with a suitable transducer involves immobilizing them onto a surface, facilitated through adsorption or entrapment techniques. Allantoin, a stable biomarkers metabolite, holds promise for detecting oxidative stress-related complications through its enzyme.

View Article and Find Full Text PDF

To overcome the limitations of phase sampling points in testing aspherical surface wavefronts using traditional interferometers, we propose a high-spatial-resolution method based on multi-directional orthogonal lateral shearing interferometry. In this study, we provide a detailed description of the methodology, which includes the theoretical foundations and experimental setup, along with the results from simulations and experiments. By establishing a relational model between the multi-directional differential wavefront and differential Zernike polynomials, we demonstrate high-spatial-resolution wavefront reconstruction using multi-directional orthogonal lateral shearing interferometry.

View Article and Find Full Text PDF

The position accuracy of the polishing tool affects the surface quality of the polished aspheric surface. The contact deformation among the polishing tool, abrasives, and aspheric part can cause a displacement, which, in turn, will cause a position error of the polishing tool, which will lead to a significant change in the polishing force. In order to resolve this error, this paper proposed a method of normal displacement compensation for a computer numerical controlled (CNC) polishing system by controlling the polishing force.

View Article and Find Full Text PDF

Optical zoom systems have found widespread applications in fields such as security and mobile phone lenses. The theory of zoom lens design has also developed from the first order to the third order. To address the demands for large aperture, wide field, and aspheric surfaces, a zoom system design method based on high-order structural aberration coefficients is introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!