An electrically controllable liquid crystal (LC) microlens with polymer crater, which is simply prepared by droplet evaporation, has been previously proposed as a focusing device possessing excellent characteristics in optical performance, especially for the capability of tunable focal lengths. As the alignment layer on the crater surface cannot be effectively rubbed, non-uniformly symmetrical electric fields in the LC lenses usually induce disclination lines during operation. In this paper, a polymer surface stabilization technique is applied to successfully prevent disclination lines and greatly improve the performance of the LC microlens with the polymer crater.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.004620DOI Listing

Publication Analysis

Top Keywords

microlens polymer
12
liquid crystal
8
crystal microlens
8
polymer surface
8
polymer crater
8
disclination lines
8
improvement performance
4
performance liquid
4
polymer
4
surface modification
4

Similar Publications

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Inorganic Nanorods Enable the Memorization of Photoinduced Microlens Arrays in Dye-Doped Liquid Crystals.

ACS Appl Mater Interfaces

December 2024

Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

The photoinduced molecular reorientation of liquid crystals (LCs) caused by their nonlinear optical responses has attracted much attention due to their large refractive index change, leading to promising applications in optical devices. This reorientation is typically induced by light irradiation above a threshold intensity and is temporary, with the initial orientation recovering unless the LCs are polymerized and cross-linked. Our report highlights the memory effect of molecular reorientation in LCs.

View Article and Find Full Text PDF

Natural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection.

View Article and Find Full Text PDF

We present a novel photon-acid diffusion method to integrate polymer microlenses (MLs) on a four-channel, high-speed photo-receiver consisting of normal-incidence germanium (Ge) p-i-n photodiodes (PDs) fabricated on a 200 mm Si substrate. For a 29 µm diameter PD capped with a 54 µm diameter ML, its dark current, responsivity, 3 dB bandwidth (BW), and effective aperture size at -3 V bias and 850 nm wavelength are measured to be 138 nA, 0.6 A/W, 21.

View Article and Find Full Text PDF

Microstructured molds are essential for fabricating various components ranging from precision optics and microstructured surfaces to microfluidics. However, conventional fabrication technology such as photolithography requires expensive equipment and a large number of processing steps. Here, we report a facile method to fabricate micromolds based on a reusable photoresponsive hydrogel: Uniform micropatterns are engraved into the hydrogel surface using photo masks under UV irradiation within a few minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!