The spatial correlation singularity of a partially coherent vortex beam was demonstrated recently [Phys. Rev. Lett. 92, 143905 (2004)], and it was shown that the cross-correlation singularity disappears when the spatial coherence is high. In this paper, we demonstrate that the spatial autocorrelation function of a fully coherent beam in the far-field is equivalent to the Fourier transform of its intensity in the source plane. Our theoretical and experimental results show that, depending on both the radial and azimuthal mode indices (p, λ) of the incident light beam, the distribution of the far-field autocorrelation function displays a series of concentric, alternate bright and dark rings. This phenomenon may be used to determine the topological charge (the azimuthal index) of light beam with a nonzero radial index.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.002925DOI Listing

Publication Analysis

Top Keywords

fully coherent
8
coherent beam
8
autocorrelation function
8
light beam
8
beam
5
autocorrelation properties
4
properties fully
4
beam orbital
4
orbital angular
4
angular momentum
4

Similar Publications

Explainable machine learning framework for cataracts recognition using visual features.

Vis Comput Ind Biomed Art

January 2025

Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

Cataract is the leading ocular disease of blindness and visual impairment globally. Deep neural networks (DNNs) have achieved promising cataracts recognition performance based on anterior segment optical coherence tomography (AS-OCT) images; however, they have poor explanations, limiting their clinical applications. In contrast, visual features extracted from original AS-OCT images and their transform forms (e.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

We report on the first deployment of a ytterbium (Yb) transportable optical lattice clock (TOLC), commercially shipping the clock 3000 km from Boulder, Colorado, to Washington DC. The system, composed of a rigidly mounted optical reference cavity, an atomic physics package, and an optical frequency comb, fully realizes an independent frequency standard for comparisons in the optical and microwave domains. The shipped Yb TOLC was fully operational within 2 days of arrival, enabling frequency comparison with a rubidium (Rb) fountain at the United States Naval Observatory (USNO).

View Article and Find Full Text PDF

Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.

View Article and Find Full Text PDF

Liquid water still remains an ubiquitous liquid whose molecular organization requires careful investigation. In this work, we present a study of the second harmonic scattering (SHS) intensity for two different scattering angles, namely, the forward and the right angle geometries. This method performed at optical wavelengths is indeed selective toward long correlation lengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!