In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.02.134DOI Listing

Publication Analysis

Top Keywords

theoretical vibrational
8
vibrational frequencies
8
vibrational
5
vibrational spectroscopy
4
spectroscopy ft-ir
4
ft-ir laser-raman
4
laser-raman investigation
4
investigation computational
4
computational m06-2x
4
m06-2x b3lyp
4

Similar Publications

The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.

View Article and Find Full Text PDF

Spectroscopic characterization of radicals formed by hydrogen-atom abstraction from γ-valerolactone and γ-butyrolactone.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary; Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary. Electronic address:

γ-valerolactone (GVL) and its unmethylated counterpart, γ-butyrolactone (GBL), are important compounds with a wide range of potential uses. For example, GVL is proposed as an ideal alternative renewable energy source, while GBL can be utilized as an electrolyte. Understanding the combustion mechanisms of these compounds is crucial for optimizing their use as energy sources and monitoring the products formed during combustion.

View Article and Find Full Text PDF

Raman signatures of inversion symmetry breaking structural transition in quasi-1D compound, (TaSe4)3I.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation.

J Chem Phys

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface.

View Article and Find Full Text PDF

Hydrogen Bond "Double-Edged Sword Effect" on Organic Room-Temperature Phosphorescence Properties: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!