AI Article Synopsis

  • Oncogenic Ras causes cell transformation and an invasive phenotype, but the tumor suppressor p53 can inhibit this process, even though how it works isn't fully understood.
  • p53 activates the mitochondrial protease HtrA2/Omi, which helps regulate the actin cytoskeleton and prevent invasion driven by Ras.
  • When oncogenic Ras is present, it causes an increase in p53 in the cytoplasm, leading to changes that ultimately reduce the formation of invasiveness-promoting structures in cells, revealing how p53 helps control cancer progression.

Article Abstract

Oncogenic Ras induces cell transformation and promotes an invasive phenotype. The tumor suppressor p53 has a suppressive role in Ras-driven invasion. However, its mechanism remains poorly understood. Here we show that p53 induces activation of the mitochondrial protease high-temperature requirement A2 (HtrA2; also known as Omi) and prevents Ras-driven invasion by modulating the actin cytoskeleton. Oncogenic Ras increases accumulation of p53 in the cytoplasm, which promotes the translocation of p38 mitogen-activated protein kinase (MAPK) into mitochondria and induces phosphorylation of HtrA2/Omi. Concurrently, oncogenic Ras also induces mitochondrial fragmentation, irrespective of p53 expression, causing the release of HtrA2/Omi from mitochondria into the cytosol. Phosphorylated HtrA2/Omi therefore cleaves β-actin and decreases the amount of filamentous actin (F-actin) in the cytosol. This ultimately down-regulates p130 Crk-associated substrate (p130Cas)-mediated lamellipodia formation, countering the invasive phenotype initiated by oncogenic Ras. Our novel findings provide insights into the mechanism by which p53 prevents the malignant progression of transformed cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971739PMC
http://dx.doi.org/10.1083/jcb.201309107DOI Listing

Publication Analysis

Top Keywords

oncogenic ras
16
activation mitochondrial
8
mitochondrial protease
8
ras induces
8
invasive phenotype
8
ras-driven invasion
8
p53
5
p53-mediated activation
4
htra2/omi
4
protease htra2/omi
4

Similar Publications

Longer survival with precision medicine in late-stage cancer patients.

ESMO Open

January 2025

Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. Electronic address:

Background: In a per-protocol analysis of molecularly profiled patients with treatment-refractory, end-stage cancer discussed at the National Molecular Tumor Board (NMTB), we aimed to assess the overall survival (OS) outcome of targeted treatment compared with no targeted treatment.

Materials And Methods: Patients were prospectively included at a single oncological center. Whole exome and RNA sequencing (tumor-normal) were carried out, and cases were presented at the NMTB for discussion of targeted treatment.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis.

Nat Immunol

January 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.

View Article and Find Full Text PDF

Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression.

Sci Rep

January 2025

Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.

Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored.

View Article and Find Full Text PDF

Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation.

Nat Commun

January 2025

Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!