Syndecans are cell membrane proteoglycans that can modulate the activity and dynamics of some growth factor receptors and integrins. Here, we show the down-regulation of integrin lymphocyte function-associated antigen-1 (LFA-1) and inhibition of adhesion of Jurkat T cells transfected with syndecan-2. The PDZ-binding domain in the cytoplasmic region of syndecan-2 was necessary to block the LFA-1 high-affinity conformation, and to reduce cellular adhesion. A second cytoplasmic motif comprising tyrosines 179 and 191, and serines 187 and 188 contributed also to reduce LFA-1 function and cellular adhesion. Inhibition of the LFA-1 high-affinity conformation by syndecan-2 was independent of the expression of the talin head domain and RhoA, Rac1 and Cdc42 GTPases. These results demonstrate the importance of PDZ-binding domain of syndecan-2 for controlling LFA-1 affinity and cell adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2014.03.012 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada.
The Hippo pathway plays a tumorigenic role in highly angiogenic glioblastoma (GBM), whereas little is known about clinically relevant Hippo pathway inhibitors' ability to target adaptive mechanisms involved in GBM chemoresistance. Their molecular impact was investigated here in vitro against an alternative process to tumour angiogenesis termed vasculogenic mimicry (VM) in GBM-derived cell models. In silico analysis of the downstream Hippo signalling members YAP1, TAZ and TEAD1 transcript levels in low-grade glioblastoma (LGG) and GBM tumour tissues was performed using GEPIA.
View Article and Find Full Text PDFInt J Med Sci
December 2024
Department of Ultrastructural Pathology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
J Mol Recognit
December 2024
Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
Background: Atypical chemokine receptors (ACKRs) play an important role in regulating the availability of chemokines and are responsible for the formation of chemokine gradients required for the directed migration of immune cells in health and disease. ACKR4 shapes gradients of the chemokines CCL19 and CCL21, which are essential for guiding leukocyte homing to lymphoid organs where they initiate an adaptive immune response against invading pathogens. How ACKRs internalize and scavenge chemokines on the molecular level remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!