Transcriptional dysregulation in Huntington's disease: a failure of adaptive transcriptional homeostasis.

Drug Discov Today

Burke Medical Research Institute, White Plains, NY 10065, USA; Brain and Mind Research Institute, Weill Medical College, Cornell University, White Plains, NY 10605, USA; Department of Neurology, Weill Medical College, Cornell University, White Plains, NY 10605, USA. Electronic address:

Published: July 2014

Huntington's disease (HD) is a signature polyglutamine disorder. An enduring theory of HD pathogenesis has involved dysregulation of transcription. Indeed, transcriptional regulatory proteins can be modulated to overcome cardinal features of HD-modeled mice, and efforts to move these into human studies are ongoing. Here, we discuss a unifying hypothesis emerging from these studies, which is that HD represents the pathological disruption of evolutionarily conserved adaptive gene programs to counteract oxidative stress, mitochondrial dysfunction and accumulation of misfolded proteins. Transcriptional dyshomeostasis of adaptive genes is further exacerbated by repression of genes involved in normal synaptic activity or growth factor signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082751PMC
http://dx.doi.org/10.1016/j.drudis.2014.03.016DOI Listing

Publication Analysis

Top Keywords

huntington's disease
8
transcriptional
4
transcriptional dysregulation
4
dysregulation huntington's
4
disease failure
4
failure adaptive
4
adaptive transcriptional
4
transcriptional homeostasis
4
homeostasis huntington's
4
disease signature
4

Similar Publications

: Huntington's disease (HD) is a neurodegenerative movement disorder associated with significant disability and impairment of Activities of Daily Living (ADLs). The impact of upper limb disability on quality of life (QoL) and its influence on ADLs is not well known yet. The aim of this study was to describe the manipulative dexterity, strength, and manual eye coordination of patients with manifest and premanifest-HD compared to healthy individuals and to analyze its influence on ADLs and QoL.

View Article and Find Full Text PDF

In the medical field, there are several very different movement disorders, such as tremors, Parkinson's disease, or Huntington's disease. A wide range of motor and non-motor symptoms characterizes them. It is evident that in the modern era, the use of smart wrist devices, such as smartwatches, wristbands, and smart bracelets is spreading among all categories of people.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!