Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2014.03.004 | DOI Listing |
Sensors (Basel)
January 2025
Faculty of Science and Environmental Studies, Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
In recent years, significant progress has been achieved in understanding and processing tabular data. However, existing approaches often rely on task-specific features and model architectures, posing challenges in accurately extracting table structures amidst diverse layouts, styles, and noise contamination. This study introduces a comprehensive deep learning methodology that is tailored for the precise identification and extraction of rows and columns from document images that contain tables.
View Article and Find Full Text PDFFoods
January 2025
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.
View Article and Find Full Text PDFFoods
January 2025
CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal.
Brewers' spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties.
View Article and Find Full Text PDFFoods
December 2024
Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201 Reus, Catalonia, Spain.
Meat and meat products are vital sources of essential nutrients for human health and development. However, an excessive or inappropriate consumption can pose significant health risks. In 2015, the International Agency for Research on Cancer (IARC) classified red meat as "probably carcinogenic to humans" and processed meat as "carcinogenic to humans", yet the role of environmental contaminants in these products was not addressed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!