In the first phase of salt stress the elongation growth of maize shoots is severely affected. The fixation of shape at the end of the elongation phase in Poaceae leaves has frequently been attributed to the formation of phenolic cross-links in the cell wall. In the present work it was investigated whether this process is accelerated under salt stress in different maize hybrids. Plants were grown in nutrient solution in a growth chamber. Reduction of shoot fresh mass was 50% for two hybrids which have recently been developed for improved salt resistance (SR 03, SR 12) and 60% for their parental genotype (Pioneer 3906). For SR 12 and Pioneer 3906, the upper three leaves were divided into elongated and elongating tissue and cell walls were isolated from which phenolic substances and neutral sugars were determined. Furthermore, for the newly developed hybrids the activity of phenolic peroxidase in the cell wall was analysed in apoplastic washing fluids and after sequential extraction of cell-wall material with CaCl2 and LiCl. The concentration of ferulic acid, the predominant phenolic cross-linker in the grass cell wall, was about 5mgg(-1) dry cell wall in elongating and in elongated tissue. The concentration of diferulic acids (DFA) was 2-3mgg(-1) dry cell wall in both tissues. Salt stress increased the concentration of ferulic acid (FA) and DFA in the parental genotype Pioneer 3906, but not in SR 12. Both genotypes showed an increase in arabinose, which is the molecule at which FA and DFA are coupled to interlocking arabinoxylan polymers. In SR 12, the activity of phenolic peroxidase was not influenced by salt stress. However, in SR 03 salt stress clearly increased the phenolic peroxidase activity. Results are consistent with the hypothesis that accelerated oxidative fixation of shape contributes to growth suppression in the first phase of salt stress in a genotype-specific manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2014.02.014 | DOI Listing |
Clin Kidney J
January 2025
Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Salt is a major abiotic factor significantly affecting plant growth and development. Alfalfa (Medicago sativa L.), a crucial perennial crop for livestock feed, shows significant differences in salt tolerance among different varieties.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Soil salinization is one of the main problems leading to a reduction in arable land area. In the present study, strongly salt-tolerant lines were screened for germination rates and physiological indices. The mechanism of saline-alkali stress tolerance in winter rapeseed was examined using transcriptome and metabolome analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!