Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: We report the observation of thermal annealing- and nitrogen-induced effects on electronic transport properties of as-grown and annealed n- and p-type modulation-doped Ga1 - xInxNyAs1 - y (x = 0.32, y = 0, 0.009, and 0.012) strained quantum well (QW) structures using magnetotransport measurements. Strong and well-resolved Shubnikov de Haas (SdH) oscillations are observed at magnetic fields as low as 3 T and persist to temperatures as high as 20 K, which are used to determine effective mass, 2D carrier density, and Fermi energy. The analysis of temperature dependence of SdH oscillations revealed that the electron mass enhances with increasing nitrogen content. Furthermore, even the current theory of dilute nitrides does not predict a change in hole effective mass; nitrogen dependency of hole effective mass is found and attributed to both strain- and confinement-induced effects on the valence band. Both electron and hole effective masses are changed after thermal annealing process. Although all samples were doped with the same density, the presence of nitrogen in n-type material gives rise to an enhancement in the 2D electron density compared to the 2D hole density as a result of enhanced effective mass due to the effect of nitrogen on conduction band. Our results reveal that effective mass and 2D carrier density can be tailored by nitrogen composition and thermal annealing-induced effects.
Pacs: 72.00.00; 72.15.Gd; 72.80.Ey.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976160 | PMC |
http://dx.doi.org/10.1186/1556-276X-9-141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!