Incidence of Legionella and heterotrophic bacteria in household rainwater tanks in Azumino, Nagano prefecture, Japan.

Microbiol Immunol

Division of Infection Control and Microbiological Regulation, Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine.

Published: January 2014

Many administrative agencies in Japan are encouraging installation of household rainwater-storage tanks for more effective use of natural rainwater. Water samples were collected periodically from 43 rainwater tanks from 40 households and tested for the presence of Legionella species and the extent of heterotrophic bacteria in Azumino city, Nagano prefecture, Japan. PCR assays indicated the presence of Legionella spp. in 12 (30%) of the 43 tank water samples. Attempts were made to identify correlations between PCR positive samples, topography, pH, chemical oxygen demand (COD), atmospheric temperature and the numbers of heterotrophic bacteria. Between June and October, 2012, the numbers of heterotrophic bacteria in rainwater tanks and the values of COD positively correlated with the presence of Legionella species. In most of the Legionella-positive cases, heterotrophic bacterial cell counts were >10(4) CFU/mL. Moreover, Legionella species were less frequently detected when the COD value was >5 mg KMnO(4)/L. Therefore, at least in Azumino, Japan between June and October 2012, both heterotrophic bacterial counts and COD values may be considered index parameters for the presence of Legionella cells in rainwater tanks. Much more accumulation of such data is needed to verify the accuracy of these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12113DOI Listing

Publication Analysis

Top Keywords

heterotrophic bacteria
16
rainwater tanks
16
presence legionella
16
legionella species
12
nagano prefecture
8
prefecture japan
8
water samples
8
numbers heterotrophic
8
june october
8
october 2012
8

Similar Publications

Overlooked tripartite microbial interactions influencing chemical cycling in the ocean.

Trends Microbiol

January 2025

Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales 2007, Australia; UAR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France. Electronic address:

Inter-microbial interactions fundamentally govern ocean ecology and biogeochemistry. Recently, Henshaw and colleagues revealed that important inter-bacterial associations in the ocean can be shaped by viral infections, whereby infected cyanobacteria release specific chemicals that attract heterotrophic bacteria, uncovering a new tripartite microbial interaction that influences carbon transfer in the surface ocean.

View Article and Find Full Text PDF

Water treatment technologies have received great attention recently, as water is the most important nutritional element, and animals consume it daily in larger quantities than those of food. The ideal water treatment affects the chemical composition and physical properties of water, having a significant positive impact on the animal's physiology, productivity, and welfare. Studies conducted on water ionization devices for broiler chickens remain limited; therefore, this study was planned to investigate the effect of ionized drinking water on the productive performance, physiological status, and carcass characteristics of broiler chicks.

View Article and Find Full Text PDF

Insight into enhanced adaptability of iron-carbon biofilter in treating low-carbon nitrogen mariculture wastewater for nitrogen removal and carbon reduction.

Bioresour Technol

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China. Electronic address:

Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO-N removal efficiency (65.

View Article and Find Full Text PDF

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

The addition of acetic acid to cultures is usually used to inhibit the growth of heterotrophic bacteria; however, we found that acetic acid also promotes the growth of CICC41233, as well as the synthesis of pigments (MPs). Compared with no acetic acid or HCl addition, the diameter of CICC41233 colonies increased significantly under acetic acid conditions. On the sixth day of fermentation, the yield of total pigments in increased significantly by 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!