Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddu128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!