Monitoring of the biological degradation of a substrate by microorganisms is a key issue, especially in the soil bioremediation area. Respiration measurement is the easiest way to obtain online information on the biological activity. Nevertheless, it is indirectly related to substrate consumption and microbial growth. To be able to link these phenomena, a robust and descriptive model has been developed. Both biological and gas/liquid transfer dynamics must be taken into account to link the online measurement with the actual biological respiration. For that, experimental evolution of the respiratory ouotient (RQ) during a biodegradation has been compared against general biodegradation knowledge. To obtain a reliable model, practical and structural sensitivity analyses have been conducted. The model can describe the evolution of both online measurable and non-measurable states. It also gives a new definition of the apparent RQ, measured in the gas phase, compared to the actual biological RQ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-014-1157-xDOI Listing

Publication Analysis

Top Keywords

actual biological
8
biological
5
modeling aerobic
4
aerobic bioprocess
4
bioprocess based
4
based gas
4
gas exchange
4
exchange dynamics
4
dynamics novel
4
novel approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!