We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-014-1191-5 | DOI Listing |
BMC Neurol
January 2025
Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland.
Background: Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of Parkinson's disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes after STN-DBS.
Case Presentation: 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson's Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale.
Brain Stimul
January 2025
Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, and Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, ON, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada. Electronic address:
Oper Neurosurg (Hagerstown)
September 2024
Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA.
Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Physiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
Background: The globus pallidus internus (GPi) is the traditional evidence-based deep brain stimulation (DBS) target for treating dystonia. Although patients with isolated "primary" dystonia respond best to GPi-DBS, some are primary or secondary nonresponders (improvement <25%), showing variability in clinical response.
Objective: The aim was to survey current practices regarding alternative DBS targets for isolated dystonia patients with focus on nonresponders to GPi-DBS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!