Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pattern recognition methods for classifying user motion intent based on surface electromyography developed by research groups in well-controlled laboratory conditions are not yet clinically viable for upper limb prosthesis control, due to their limited robustness in users' real-life situations. To address this problem, a novel postprocessing algorithm, aiming to detect and remove misclassifications of a pattern recognition system of forearm and hand motions, is proposed. Using the maximum likelihood calculated by a classifier and the mean global muscle activity of the forearm, an artificial neural network was trained to detect potentially erroneous classification decisions. This system was compared to four previously proposed classification postprocessing methods, in both able-bodied and amputee subjects. Various nonstationarities were included in the experimental protocol to account for challenges posed in real-life settings, such as different contraction levels, static and dynamic motion phases, and effects induced by day-to-day transfers, such as electrode shifts, impedance changes, and psychometric user variability. The improvement in classification accuracy with respect to the unprocessed classifier ranged from 4.8% to 31.6%, depending on the scenarios investigated. The system significantly reduced misclassifications to wrong active classes and is thus a promising approach for improving the robustness of hand prosthesis controllability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2013.2296274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!