The recent research on ageing processes in mammals throws new light on the biochemistry of circadian clock. The already known regulatory pathways for biological rhythms and metabolism, combined with newly discovered functions of sirtuins, unveil a perspective for new hypotheses, regarding possible links between ageing and circadian rhythms. The NAD World hypothesis - postulated as a systemic regulatory network for the metabolism and ageing, linked with mammalian, NAD+ dependent Sirtuin 1 - conceptually involves two critical elements. One is the systemic, Nampt-controlled NAD+ (nicotinamide phosphoribosyltransferase) biosynthesis, where Nampt (nicotinamide phosphoribosyltransferase) acts as "propulsion" for metabolism and the other is NAD+ dependent deacetylase (SIRT1) - a regulator responsible for various biological effects, depending on its localisation in organism. In this approach, the role of sirtuins, which are evolutionary conservative, NAD+ dependent histone deacetylases, may be very important for the mammalian metabolic clock. This paper is a review of current research on possible links among SIRT1 (Sirtuin 1), metabolism and ageing with particular consideration of the NAD World hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2014.03.015 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland.
Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Background: The mammalian NAD-dependent deacetylase sirtuin-1 family (named also silent information regulator or SIRT family, where NAD stands for "nicotinamide adenine dinucleotide" (NAD)) appears to have a dual role in several human cancers by modulating cell proliferation and death. This study examines how SIRT1 protein levels correlate with clinicopathological characteristics and survival outcomes in patients with breast cancer.
Methods: A total of 407 BC formalin-fixed paraffin-embedded (FFPE) samples were collected from King Abdulaziz University Hospital, Saudi Arabia.
J Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!