Recently, researchers have shown an increased interest in the biomechanical modelling of cerebral aneurysm development. In the present study a fluid-solid-growth model for the formation of a fusiform aneurysm has been presented in an axi-symmetric geometry of the internal carotid artery. This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodelling and second, full coupling of the wall and the blood flow. Here for the first time the degradation of elastin has been defined as a function of vascular wall effective stress to take into account the shear dependent nature of degradation and the mural-cell-mediated destructive activities. The model has been stabilized in size and mechanical properties and is consistent with other computational or clinical studies. Furthermore, the evolving microstructural properties of the wall during the evolution process have been predicted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2014.03.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!