Failures of inhibitory control can severely affect everyday life in healthy individuals and represent a common feature of many neuropsychiatric conditions, particularly disorders with dopaminergic disturbances implicated. This study's aim was to examine the interacting influences of three common and functional gene variants that influence dopaminergic pathways on an aspect of inhibitory control (action restraint). Three hundred and twenty two healthy adults were selected from an international consortium linked to Brain Research and Integrative Neuroscience (BRAINnet). DNA was extracted from cheek swab samples and participants were genotyped for the Val158Met single nucleotide polymorphism on COMT (rs 4680), C957T on DRD2 (rs 6277) and the 40bp variable number of tandem repeat on the DAT1 (SLC6A3, 10/10 vs 9+). Response inhibition was measured using a computerised Go/No-Go task. Main effects and interactions between genotypes were explored. We did not observe a genotype effect on fundamental measures of response inhibition, i.e. reaction time (RT) and commission errors. RT variability was significantly increased in DRD2 C957T heterozygotes. In conclusion, this large, non-clinical study reveals that the selected genetic polymorphisms regulating dopamine (COMT, DRD2 and DAT1) do not influence one aspect of response inhibition, action restraint, as measured by the Go/No-Go task, reinforcing the neuropharmacological dissociation between stop-signal and Go/No-Go tasks. Genetic variation in striatal dopamine may, however, contribute to intraindividual RT variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2014.03.015 | DOI Listing |
Adv Biotechnol (Singap)
March 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
Decapod iridovirus 1 (DIV1) poses a major challenge to sustainable shrimp farming and poses a serious hazard to aquaculture industry. This study investigated the complex interaction between DIV1 infection and water temperature, focusing on the effect of high temperature on DIV1 infection due to Penaeus monodon. Using models of latent and acute infection, the study revealed the response of P.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:
Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.
View Article and Find Full Text PDFJ Anus Rectum Colon
January 2025
Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki, Japan.
Fever and diarrhea are the common symptoms of infection (CDI); however, pseudomembranous enteritis, megacolonization, and paralytic ileus have been observed in severe cases. spores are resistant to several types of disinfectants. Thus, they are often the causative pathogens of healthcare-associated infections.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!