Non-degradative sorption of organic pollutants onto plant roots during phytoremediation is an essential retardation mechanism. To determine the extent of the attenuation processes the freely dissolved concentrations of organic solutes must be determined rather than their total concentrations. Thus, the assessment of attenuation caused by sorption onto plant compartments can be biased when using traditional methods. This bias holds especially true in cases of complex multiphase systems characterized by high concentrations of dissolved and suspended organic matter, both of them contributing to a reduction in concentration of the free solutes. A relatively new approach based on solid phase microextraction (SPME) circumvents these obstacles. SPME measures the true freely dissolved concentration of organic solutes without affecting the sorption equilibrium, thus allowing non-biased conclusions about ecotoxicological hazards of organic sorbates. Herein, sorption of phenols (including alkylated phenols) along with polycyclic aromatic hydrocarbons (PAHs) onto roots of Juncus effusus was investigated. Sorption coefficients in the complex system measured with SPME were significantly higher compared to those measured by traditional methods such as phase separation and solvent extraction. A concept based on Hildebrand solubility parameters was applied to interpret and predict sorption onto helophyte roots. The solubility parameter of the root sorbent was calculated as 26.1 (Jcm(-3))(0.5), which is between that of lignin and cellulose/hemicellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.03.004 | DOI Listing |
PLoS One
January 2025
Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America.
Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.
View Article and Find Full Text PDFBiodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt. Electronic address:
Background: The highly industrialized areas characterize the delta coasts of the world, due to the discharging of large quantity of wastewater into the river estuaries. The entrance of phenolic compounds and PAHs into the aquatic environment has not been sufficiently studied on the Egyptian Mediterranean coast. The article examines the content and ecological risks associated with 11 phenolic compounds and 14 PAHs in the bottom sediments of the Nile River estuaries, the largest river systems that discharged into the Mediterranean Sea.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515, University of Strasbourg, F-67087 Strasbourg Cedex 3, Strasbourg, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!