This study investigated the effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on free radical-related processes in tissues of goldfish given 96 h exposures to 1, 10 or 100 mg/L of 2,4-D as well as 96 h recovery from the 100 mg/L treatment. In liver, 2,4-D exposure increased levels of protein carbonyls and lipid peroxides by 36-53% and 24-43%, respectively, but both parameters reverted during recovery, whereas in brain glutathione status improved in response to 2,4-D. Lipid peroxide content in kidney was enhanced by 40-43% after exposure to 2,4-D with a decrease during recovery. Exposure to 2,4-D also reduced liver acetylcholinesterase activity by 31-41%. The treatment increased catalase activity in brain, but returned it to initial levels after recovery. In kidney, exposure to 100 mg/L of 2,4-D caused a 33% decrease of superoxide dismutase activity. Thus, goldfish exposure to 2,4-D induced moderate oxidative stress in liver and kidney and mild oxidative stress in brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2014.02.007DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
100 mg/l
12
exposure 24-d
12
24-dichlorophenoxyacetic acid
8
liver kidney
8
24-d
8
mg/l 24-d
8
exposure
5
tissue-specific induction
4
induction oxidative
4

Similar Publications

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma.

Adv Sci (Weinh)

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.

The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.

View Article and Find Full Text PDF

With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!