This study investigated applications of the electrochemical anodic oxidation process with Pt-FTO and Pt/MWCNTs-FTO glasses as anodes on the treatment of one of the most important emerging contaminants, naproxen. The anodes used in this study have been synthesized using commercial FTO, MWCNTs and Pt nanoparticles (PtNP). XRD patterns of Pt nanoparticles coated on FTO and MWCNTs revealed that MWCNTs can prevent the surface of PtNPs from sintering and thus provide a greater reaction sites density to interact with naproxen, which have also been confirmed by higher degradation and mineralization efficiencies in the Pt/MWCNTs-FTO system. Results from the CV analysis showed that the Pt-FTO and Pt/MWCNTs-FTO electrodes possessed dual functions of decreasing activation energy and interactions between hydroxyl radicals to effectively degrade naproxen. The lower the solution pH value, the better the degradation efficiency. The existence of humic acid indeed inhibited the degradation ability of naproxen due to the competitions in the multiple-component system. The electrochemical degradation processes were controlled by diffusion mechanism and two major intermediates of 2-acetyl-6-methoxynaphthalene and 2-(6-Hydroxy-2-naphthyl)propanoic acid were identified. This study has successfully demonstrated new, easy, flexible and effective anodic materials which can be feasibly applied to the electrochemical oxidation of naproxen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2014.02.034 | DOI Listing |
Anal Chem
January 2025
Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.
View Article and Find Full Text PDFPain Rep
February 2025
School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
During the initial cycling of lithium-ion batteries, the generation of SEI at the electrode-electrolyte interface and the occurrence of irreversible side reactions consume the active lithium, resulting in irreversible loss of volume (ICL), which may also be accompanied by electrode volume changes and structural collapse. Addressing these challenges has become critical, and pre-lithiation with additional lithium has emerged as a key way to improve battery performance. Hence, this review comprehensively analyzes and summarizes the causes of ICL in lithium-ion batteries, and systematically discusses various prelithiation methods and mechanisms of different electrode structures, especially electrodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.
To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.
The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!