Hepatocellular carcinoma (HCC) is one of the most common highly aggressive malignant tumors worldwide. Aldoketoreductase 1B10 (AKR1B10) was first isolated from HCC and further identified to be over-expressed in many cancers from various organs. AKR1B10 contributes to detoxification of xenobiotics by lipid peroxidation and metabolizes physiological substrates such as farnesal, retinal, and carbonyls. Metabolizing these lipid substrates plays a crucial role in promoting carcinogenesis. In the present study, immunohistochemical analysis was performed to determine the prevalence/pattern of AKR1B10 expression in HCC and its usefulness to differentiate benign liver lesions from HCC. Oncogenic function of AKR1B10 was examined in hepatocellular carcinoma cells in vitro using Western blotting and shRNA knockdown approaches, with emphasis on cell apoptosis and response to chemotherapy. Immunohistochemistry analysis revealed AKR1B10 was overexpressed in 97% (86/89) of hepatocellular carcinomas, with minimal to no expression in adjacent hepatic tissue, while hepatic adenomas and focal nodular hyperplasia did not exhibit expression of AKR1B10. shRNA-mediated silencing of AKR1B10 expression in hepatocellular carcinoma cells resulted in (1) increased cell apoptosis, (2) decreased colony formation and size, and (3) enhanced cytoreductive response following exposure to doxorubicin chemotherapy. Our findings provide first time evidence that AKR1B10 is a unique biomarker involved in hepatocellular carcinogenesis via modulation of proliferation, cell apoptosis and chemoresistance and is a potential promising biomarker to differentiate HCCs from benign hepatic lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030546PMC
http://dx.doi.org/10.1016/j.humpath.2013.12.002DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
16
cell apoptosis
12
akr1b10
9
1b10 akr1b10
8
benign liver
8
liver lesions
8
akr1b10 expression
8
carcinoma cells
8
hepatocellular
6
aldoketoreductase family
4

Similar Publications

Background: Immune checkpoint inhibitors (ICIs) combined with anti-vascular endothelial growth factor (VEGF) have been the standard first-line treatment of hepatocellular carcinoma (HCC). However, the efficacy of this combination in post-line treatment is still unknown. This study aimed to evaluate the efficacy and safety of the combination of anti-PD-L1 envafolimab and novel humanized anti-VEGF suvemcitug as second-line treatment for patients with HCC.

View Article and Find Full Text PDF

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

Background: Nanotechnology has increasingly been applied in the diagnosis and treatment of hepatocellular carcinoma (HCC) over the past two decades. This study aims to explore the utilization of nanotechnology in HCC through a bibliometric analysis, identifying key themes, trends, and contributions in this field.

Methods: The study utilized VOSviewer and CiteSpace software to perform a bibliometric analysis, evaluating scholarly contributions related to nanotechnology in HCC.

View Article and Find Full Text PDF

Insufficient radio-frequency ablation (IRFA) of hepatocellular carcinoma accelerates the recurrence of residual tumor, leading to a poor prognosis. Neutrophils (NEs), as the initial leukocytes to infiltrate the IRFA-associated inflammatory area, were utilized as drug carriers due to their inherent chemotactic properties for targeted delivery of chemotherapy drugs to the inflammatory site where residual tumor persists post-IRFA. Previous research has highlighted that the immunosuppressive cytokines in the tumor microenvironment could promote the transition of NEs into a protumorigenic phenotype.

View Article and Find Full Text PDF

Purpose: To compare the clinical outcomes of different systemic therapies, specifically PD(L)1 inhibitors plus Lenvatinib versus Atezolizumab plus Bevacizumab, when combined with hepatic arterial infusion chemotherapy (HAIC) based on the FOLFOX regimen (oxaliplatin, fluorouracil, and leucovorin) as first line treatment for unresectable hepatocellular carcinoma.

Patients And Methods: This real-world retrospective study enrolled 294 patients with unresectable HCC. All patients received HAIC in combination with either PD(L)1 inhibitors plus Lenvatinib (PLEN-HAIC) or Atezolizumab plus Bevacizumab (AT-HAIC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!