Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2013.11.016 | DOI Listing |
Commun Biol
December 2024
Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system.
View Article and Find Full Text PDFChem Biodivers
December 2024
Bartin University, Molecular Biolody and Genetics, Kutlubey Campus, 74100, Bartin, TURKEY.
Herbal products are valuable biological resources of bioactive compounds expressed as secondary metabolites. This study aimed to explore the potential biological properties and phenolic content of Cyanus celikhanensis, which has no data on pharmacological properties. A quantitative phytochemical analysis of C.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Institute of Plant Sciences, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
Unicellular green algae of the genus Coccomyxa are recognized for their worldwide distribution and ecological versatility. Coccomyxa elongata is a freshwater species of the Coccomyxa simplex clade, which also includes lichen symbionts. To facilitate future molecular and phylogenomic studies of this versatile clade of algae, we generated a high-quality genome assembly for Coccomyxa elongata Chodat & Jaag SAG 216-3b within the framework of the Biodiversity Genomics Center Cologne (BioC2) initiative.
View Article and Find Full Text PDFDrug Chem Toxicol
November 2024
Department of Medical Biochemistry, Bilecik Seyh Edebali University, Bilecik, Turkey.
Methotrexate (MTX) is a generally applied chemotherapeutic medicine in most cancers treatment. Morin hydrate, a robust antioxidant, is a secondary metabolite observed in numerous plants, along with figs, white mulberries, and others. The hypothesis of this study is that morin hydrate can effectively reduce MTX-induced kidney injury in rats by increasing antioxidant enzyme activity and inhibiting apoptotic processes.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!