Interaction-tuned dynamical transitions in a Rashba spin-orbit-coupled Fermi gas.

Phys Rev Lett

Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA.

Published: March 2014

We consider the time evolution of the magnetization in a Rashba spin-orbit coupled Fermi gas, starting from a fully polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting nonlinear system of equations gives rise to three distinct dynamical regimes with qualitatively different asymptotic behaviors of the magnetization at long times. The distinct regimes and the transitions between them are controlled by the ratio of interaction and spin-orbit coupling strength λ: for small λ, the magnetization decays to zero. For intermediate λ, it displays undamped oscillations about zero, and for large λ, a partially magnetized state is dynamically stabilized. The dynamics we find is a spin analog of interaction induced self-trapping in double-well Bose Einstein condensates. The predicted phenomena can be realized in trapped Fermi gases with synthetic spin-orbit interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.112.095302DOI Listing

Publication Analysis

Top Keywords

fermi gas
8
interaction-tuned dynamical
4
dynamical transitions
4
transitions rashba
4
rashba spin-orbit-coupled
4
spin-orbit-coupled fermi
4
gas consider
4
consider time
4
time evolution
4
evolution magnetization
4

Similar Publications

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.

View Article and Find Full Text PDF

Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering.

Materials (Basel)

January 2025

Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.

The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.

View Article and Find Full Text PDF

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!