Novel self-assembled micelles based on palmitoyl-trimethyl-chitosan for efficient delivery of harmine to liver cancer.

Expert Opin Drug Deliv

Soochow University, College of Pharmaceutical Sciences, Department of Pharmaceutics , Suzhou 215123, Jiang Su Province , People's Republic of China +86 0512 65882087 ; +86 0512 65882087 ;

Published: June 2014

Background: Polymeric micelles is a safe and effective delivery system, which belong to the targeted delivery system (TDS). An anticancer drug, harmine(HM) is a hydrophobic drug with much adverse effects when used for treatment of liver cancer. Chitosan (CS) is a polysaccharide and can be modified to be an amphiphilic polmer which could self-assemble into micelles and be applied for delivery of hydrophobic drugs.

Objectives: To synthesize three kinds of novel biodegradable polymers, designated as palmitoyl-trimethyl-CS (TPCS)1, TPCS2 and Lac-TPCS2, and investigate their efficiency and mechanism of delivery HM to liver tumors in vitro and in viro.

Results: The self-assembled micelles presented satisfactory particle size (∼ 200 nm) and drug release characteristics in vitro. It's proved that Lac-TPCS2/HM may enter HepG2 cell through endocytosis. Antitumor experiments in vivo revealed that Lac-TPCS2/HM could significantly inhibit tumor growth and extend the lifetime of mice bearing H22 tumors after intravenous administration. Subsequently in vivo near-infrared fluorescence imaging results demonstrated a satisfactory liver tumor-targeting effect of Lac-TPCS2/HM.

Conclusion: Three novel polymers hold great potential in the development of nanomedicine for treatment of liver tumors, in particular Lac-TPCS2 exhibits the greatest antitumor potential through active target effect.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.2014.893292DOI Listing

Publication Analysis

Top Keywords

self-assembled micelles
8
liver cancer
8
delivery system
8
treatment liver
8
liver tumors
8
delivery
5
liver
5
novel self-assembled
4
micelles
4
micelles based
4

Similar Publications

Drug-coated balloons (DCBs) are effective tools for cardiovascular interventions, ensuring uniform drug delivery to occluded arteries. This research investigates the potential of Pluronic P123 (P123), a micelle-forming polymer, to solubilize and release Everolimus (EVE) from DCBs. Furthermore, it seeks to understand how the ratio of P123 to EVE affects release rates and micelle formation under physiological conditions.

View Article and Find Full Text PDF

Postpolymerization modifications are valuable techniques for creating functional polymers that are challenging to synthesize directly. This study presents aliphatic polycarbonates with pendant thiol-reactive groups for disulfide formation with mercaptans. The reductive responsive nature of this reaction allows for reversible postpolymerization modifications on biodegradable scaffolds.

View Article and Find Full Text PDF

Morphology and Applications of Self-Assembled Peptide Nucleic Acids.

Int J Mol Sci

November 2024

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Venezian 21, 20133 Milan, Italy.

Obtaining new materials by exploiting the self-assembly of biomolecules is a very challenging field. In recent years, short peptides and nucleic acids have been used as scaffolds to produce supramolecular structures for different applications in the biomedical and technological fields. In this review, we will focus on the self-assembly of peptide nucleic acids (PNAs), their conjugates with peptides, or other molecules.

View Article and Find Full Text PDF

Artificial lipids have become increasingly important in generating novel nanoenzymes and nanoparticles. Imidazole has been well established as a versatile catalyst in synthetic chemistry and through its related amino acid histidine in enzymes. By exploiting the transphosphatidylation reaction of phospholipase D, the choline headgroup of phosphatidyl choline was exchanged for the imidazole moiety containing histidinol.

View Article and Find Full Text PDF

Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!