A novel perylene diimide dye functionalized with phosphonate groups, N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI), is synthesized and characterized. Thin films of PMPDI spin-coated onto indium tin oxide (ITO) substrates are further characterized, augmented by photoelectrochemically depositing a CoOx catalyst, and then investigated as photoanodes for water oxidation. These ITO/PMPDI/CoOx electrodes show visible-light-assisted water oxidation with photocurrents in excess of 150 μA/cm(2) at 1.0 V applied bias vs. Ag/AgCl. Water oxidation is confirmed by the direct detection of O2, with a faradaic efficiency of 80 ± 15% measured under 900 mV applied bias vs. Ag/AgCl. Analogous photoanodes prepared with another PDI derivative with alkyl groups in place of PMPDI's phosphonate groups do not function, providing evidence that PMPDI's phosphonate groups may be important for efficient coupling between the inorganic CoOx catalyst and the organic dye. Our ITO/PMPDI/CoOx anodes achieve internal quantum efficiencies for water oxidation ∼1%, and for hydroquinone oxidation of up to ∼6%. The novelty of our system is that, to the best of our knowledge, it is the first device to achieve photoelectrochemically driven water oxidation by a single-layer molecular organic semiconductor thin film coupled to a water-oxidation catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am405598w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!