UV-visible absorption spectroscopy combined with quantum chemical calculations and, notably, Time-Dependent Density Functional Theory were used to probe the structure of metal complexes with esculetin in dilute aqueous solution, at pH = 5. For the 1:1 complex formation, the studied metal ions can be classified according to their complexing power: aluminum(III) > copper(II) > lead(II). For the three complexes, a chelate is formed with the fully deprotonated catechol moiety and an absorption band is observed at the same wavelength. In all cases, a pronounced ionic character is calculated for metal-ligand bonds. However, the complexes differ in their coordination sphere. Copper and lead are bound to two water molecules leading to a square plane geometry and a hemidirected complex, respectively, whereas aluminum atom has an octahedral environment involving three water molecules and a hydroxide ion. For Al(III) only, a 2:1 complex is observed, and the involvement of an aluminum dimer was evidenced.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp412291zDOI Listing

Publication Analysis

Top Keywords

metal ions
8
water molecules
8
complexation aliii
4
aliii pbii
4
pbii cuii
4
cuii metal
4
ions esculetin
4
esculetin spectroscopic
4
spectroscopic theoretical
4
theoretical approach
4

Similar Publications

Background: Imbalanced Fe levels can lead to oxidative stress and initiate ferroptosis, an Fe-dependent cell death that involves lipid peroxidation and can lead to neuron cell loss in neurodegenerative diseases including Alzheimer's disease (AD). While the Fe/Fe ratio has been identified as the primary determining factor for lipid peroxidation, the role of Fe redox equilibrium and dynamic in AD is not well understood, due to limited tools for visualizing Fe and Fe simultaneously. To overcome this limitation, we recently reported DNAzyme-based sensors for simultaneous imaging of Fe and Fe.

View Article and Find Full Text PDF

Generating Strong Metal-Support Interaction and Oxygen Vacancies in Cu/MgAlO Catalysts by CO Treatment for Enhanced CO Hydrogenation to Methanol.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.

Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.

View Article and Find Full Text PDF

Substance migration in the synthesis of single-atom catalysts.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.

Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, ) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis.

View Article and Find Full Text PDF

This paper discusses the origin of emission quenching in yttrium orthovanadate codoped with Eu and Sb ions. Highly crystalline yttrium orthovanadate nanoparticles with chemical composition YEuSbVO ( = 0-5.4 mol %, = 0-2.

View Article and Find Full Text PDF

Crown ethers (CEs), macrocyclic polyethers, have attracted significant attention in supramolecular chemistry. It is known that they have many isomers due to their flexibility. It is challenging to select some exact conformation and tune the following self-assembly structure of CEs, and it has rarely been reported to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!