Mouth and oropharynx cancer constitute 5% of all malignancies; 95% of them are head and neck squamous cell carcinomas. Carcinogenesis is a multifactor process. Mutagenesis is also determined by the human papilloma virus which has recently been found to be etiologically associated with 20 to 25% of head and neck squamous cell carcinomas, mostly in the oropharinx. Focal fibrous hyperplasia of the connective tissue comes up as an answer to a chronic irritation in which a big amount of collagen can be found. As there exist certain clinical resemblance between squamous cell papilloma, fibrous focal hyperplasia and other mesenchimal tumors it is recommended to proceed, always, with removal and study. Two cases, one of an oral papilloma and another of a focal fibrous hyperplasia in pediatric patients, treated with an Er,Cr:YSGG laser wave length (mu) of 2780 nm are presented.
Download full-text PDF |
Source |
---|
Geroscience
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.
Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.
Sci Rep
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical and Computer Engineering Department, University of Memphis, Memphis, TN, 38152, USA.
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility.
View Article and Find Full Text PDFMicrobiome gained attention as a cofactor in cancers originating from epithelial tissues. High-risk (hr)HPV infection causes oropharyngeal squamous cell carcinoma but only in a fraction of hrHPV+ individuals, suggesting that other factors play a role in cancer development. We investigated oral microbiome in cancer-free subjects harboring hrHPV oral infection (n = 33) and matched HPV- controls (n = 30).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!