Air and water quality are impacted by extreme weather and climate events on time scales ranging from minutes to many months. This review paper discusses the state of knowledge of how and why extreme events are changing and are projected to change in the future. These events include heat waves, cold waves, floods, droughts, hurricanes, strong extratropical cyclones such as nor'easters, heavy rain, and major snowfalls. Some of these events, such as heat waves, are projected to increase, while others, with cold waves being a good example, will decrease in intensity in our warming world. Each extreme's impact on air or water quality can be complex and can even vary over the course of the event.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2013.851044DOI Listing

Publication Analysis

Top Keywords

air water
12
water quality
12
weather climate
8
state knowledge
8
heat waves
8
cold waves
8
changes weather
4
climate extremes
4
extremes state
4
knowledge relevant
4

Similar Publications

Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.

View Article and Find Full Text PDF

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.

View Article and Find Full Text PDF

Pervasive glacier retreats across Svalbard from 1985 to 2023.

Nat Commun

January 2025

Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.

A major uncertainty in predicting the behaviour of marine-terminating glaciers is ice dynamics driven by non-linear calving front retreat, which is poorly understood and modelled. Using 124919 calving front positions for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, generated with deep learning, we identify pervasive calving front retreats for non-surging glaciers over the past 38 years. We observe widespread seasonal cycles in calving front position for over half of the glaciers.

View Article and Find Full Text PDF

Advancements in iron-based photocatalytic degradation for antibiotics and dyes.

J Environ Manage

January 2025

School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.

The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!