AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.

FASEB J

Institut National de la Santé et de la Recherche Médicale (INSERM), Unité (U)1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France;

Published: July 2014

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production and fatigue resistance. An increase in the proportion of myofibers with centralized nuclei was noted, as well as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and mitochondrial substrate utilization but not baseline mitochondrial muscle content. Together, these results demonstrate that skeletal muscle AMPK has an unexpected role in the regulation of mitochondrial oxidative phosphorylation that contributes to the energy demands of the exercising muscle.-Lantier, L., Fentz, J., Mounier, R., Leclerc, J., Treebak, J. T., Pehmøller, C., Sanz, N., Sakakibara, I., Saint-Amand, E., Rimbaud, S., Maire, P., Marette, A., Ventura-Clapier, R., Ferry, A., Wojtaszewski, J. F. P., Foretz, M., Viollet, B. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.14-250449DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
mitochondrial oxidative
16
oxidative capacity
12
muscle
12
mitochondrial
9
ampk controls
8
controls exercise
8
exercise endurance
8
endurance mitochondrial
8
skeletal
8

Similar Publications

Aim: To comprehensively investigate the effects of antioxidant nutrients on muscle mass, strength and function in chronic obstructive pulmonary disease (COPD) patients.

Methods: PubMed, Embase, Cochrane Library, and Web of Science were comprehensively searched from the inception to January 3, 2024. The quality of randomized controlled trials (RCTs) was measured using the Jadad scale.

View Article and Find Full Text PDF

Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.

View Article and Find Full Text PDF

The purpose was to assess whether visual feedback of torque contributes to motor unit (MU) firing rate reduction observed during post-activation potentiation (PAP) of skeletal muscle. From 15 participants 23 MUs were recorded with intramuscular fine-wire electrodes from the tibialis anterior during isometric dorsiflexion contractions at 20% of maximum, with and without both PAP and visual feedback of torque. A 5s maximal voluntary contraction (MVC) was used to induce PAP, and evoked twitch responses were assessed before and after.

View Article and Find Full Text PDF

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Syncopal reactions in blood donors: Pathophysiology, clinical course, and features.

Asian J Transfus Sci

September 2022

Department of Physiology, Mahatma Gandhi Medical College, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India.

Vasovagal syncope (VVS) in donors is a transient loss of consciousness due to short-term global cerebral hypoperfusion, which has a rapid onset and has complete spontaneous recovery. VVS may be triggered by pain, fear, anxiety, or emotional upset and loss of blood perse. It is an exaggeration of an adaptive response meant to assist in reducing the amount of bleeding/loss of blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!