We prepared three discotic liquid crystals (DLCs) based on a triphenylene (TP) disc functionalized with twelve alkyl peripheries. The synthesis of the discogens was performed by a click reaction using Cu(OAc)2 as the catalyst, with six triazolyl groups connecting the TP core with twelve alkyl chains. According to thermal data from differential scanning calorimetry (DSC), discogen , which has the shortest hexyl peripheries, exhibited two LC phases, and and , with decyl and tetradecyl peripheries, respectively, displayed three LC phases as a function of the temperature. Structural analyses using small- and wide-angle X-ray scattering (SAXS and WAXS) techniques revealed ordered and disordered hexagonal columnar LC phases in all the discogens. On the other hand, an unconventional micellar phase with P42/mnm symmetry consisting of thirty micelles was found only in and , when the temperature increased. The thermally induced transformation from the columnar to the micellar phase can be explained by increased chain entropy at higher temperatures. The complex micellar packing in the noncubic phase is attributed to the softness of the DLC micelles because the micellar corona consists of flexible alkyl chains. The discogen design concept in this study (i.e., the introduction of multibranched alkyl peripheries to the discotic mesogens via click chemistry) resulted in unconventional columnar-to-micellar transformation in conventional TP DLCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3sm52669kDOI Listing

Publication Analysis

Top Keywords

liquid crystals
8
twelve alkyl
8
alkyl peripheries
8
alkyl chains
8
micellar phase
8
micellar
5
supramolecular transformation
4
transformation ordered
4
columnar
4
ordered columnar
4

Similar Publications

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

In Situ Programmable, Active, and Interactive Crystallization by Localized Polymerization.

Adv Mater

December 2024

Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea.

Additive manufacturing has sought active and interactive means of creating predictable structures with diverse materials. Compared to such active manufacturing tools, current crystallization strategies remain in statistical and passive programs of crystals via macroscale thermodynamic controllers, commonly lacking active means to intervene in crystal growth in a spatiotemporal manner. Herein, a strategy toward active and interactive programming and reprogramming of crystals, realized by real-time tangible feedback on growing crystals by delicately controlling the degree of in-situ, localized photopolymerization of polymeric structures via additive manufacturing is presented.

View Article and Find Full Text PDF

Two-dimensional (2D) high-entropy transition metal dichalcogenides (HETMDs) have gained significant interest due to their structural properties and correlated possibilities for high-end devices. However, the controlled synthesis of 2D HETMDs presents substantial challenges owing to the distinction in the inherent characteristics among diverse metal elements in the synthesis, such as saturated vapor pressure of precursors and formation energy of products. Here, we present the synthesis of a 2D HETMD single crystal with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!