The response of concentrated dispersions of charged colloids to low-frequency electric fields is governed by field-induced inter-colloidal interactions resulting from the polarization of electric double layers and the layer of condensed ions, association and dissociation of condensed ions, as well as hydrodynamic interactions through field-induced electro-osmotic flow. The phases and states that can be formed by such field-induced interactions are an essentially unexplored field of research. Experiments on concentrated suspensions of rod-like colloids (fd-virus particles), within the isotropic-nematic phase coexistence region, showed that a number of phases/states are induced, depending on the field amplitude and frequency [Soft Matter, 2010, 6, 273]. In particular, a dynamical state is found where nematic domains form and melt on a time scale of the order of seconds. We discuss the microscopic origin of this dynamical state, which is attributed to the cyclic, electric-field induced dissociation and association of condensed ions. A semi-quantitative theory is presented for the dynamics of melting and formation of nematic domains, including a model for the field-induced dissociation/association of condensed ions. The resulting equation of motion for the orientational order parameter is solved numerically for parameters complying with the fd-virus system. A limit-cycle is found, with a cycling-time that diverges at the transition line in the field-amplitude versus frequency plane where the dynamical state first appears, in accord with experimental findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3sm52277f | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:
Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Department of Entomology, University of Georgia, Tifton, GA, USA.
Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.
View Article and Find Full Text PDFChem Rev
January 2025
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!