Purpose: To map and analyze choroidal thickness (ChT) in AMD patients with reticular pseudodrusen (RPD) using three-dimensional (3D) 1060-nm optical coherence tomography (OCT).
Methods: Fifty eyes from 25 patients with RPD were grouped according to the severity of AMD and the presence of RPD. All patients were imaged by high-speed (60,000 A-scans/s) 3D 1060-nm OCT over a 36 × 36° field of view. Choroidal thickness maps were automatically generated and compared with RPD areas visualized by fundus autofluorescence and infrared imaging. Retinal thickness maps, ChT maps, Haller's and Sattler's layer thickness were statistically analyzed between groups.
Results: The mean ± SD (micrometers) subfoveal ChT was 201 ± 88 μm, 145 ± 48 μm, and 271 ± 130 μm for dry AMD with RPD, wet AMD with RPD, and eyes with wet AMD and no RPD, respectively. Choroidal thickness maps demonstrated the most significant choroidal thinning within eyes with wet AMD and RPD. Sattler's and Haller's layer thickness differed across the Early Treatment Diabetic Retinopathy Study grid when compared between eyes with and without RPD. Within eyes with RPD, ChT maps visualized that ChT was thicker below RDP areas than non-RPD areas.
Conclusions: The 3D 1060-nm OCT choroidal maps over a large field of view offer noninvasive visualization for demonstrating local thickening correlation with RPD within each eye and overall thinning owing to AMD severity and RPD. This choroidal thinning was most striking in Sattler's layer, suggesting a choroidopathy of this vascular layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001785 | PMC |
http://dx.doi.org/10.1167/iovs.13-13338 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!