Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages.

Soft Matter

Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China.

Published: January 2014

Studying dendrimer-biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3sm51990bDOI Listing

Publication Analysis

Top Keywords

interactions dendrimers
12
transport stages
12
membrane
10
asymmetric membranes
8
drug gene
8
gene delivery
8
dendrimers interacted
8
dendrimer transport
8
membrane dendrimers
8
outer side
8

Similar Publications

Probing Macromolecular Conformation in Restricted Geometry by PEF: Application to Hydrophobically Modified PAMAM Dendrimers Isolated Inside Surfactant Micelles.

J Phys Chem B

January 2025

Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

The conformation of a series of zero-generation polyamidoamine dendrimers end-labeled with four 1-pyrene-butyroyl, -hexanoyl, -octanoyl, -decanoyl, and -dodecanoyl derivatives, referred to as the PyCX-PAMAM-G0 samples with = 4, 6, 8, 10, and 12, respectively, was characterized in ,-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and aqueous solutions of 50 mM sodium dodecyl sulfate (SDS) or 50 mM dodecyltrimethylammonium bromide (DTAB). The conformation of the PyCX-PAMAM-G0 samples was determined from the global model-free analysis (MFA) of the fluorescence decays, which yielded the average rate constant (⟨⟩) for pyrene excimer formation (PEF) between an excited and a ground-state pyrenyl labels, with ⟨⟩ being proportional to the local concentration ([Py]) of the pyrenyl labels within the macromolecular volume; ⟨⟩-vs-[Py] plots yielded straight lines passing through the origin in DMF and DMSO, demonstrating that the internal segments of the dendrimers obeyed Gaussian statistics in these two solvents. In aqueous surfactant solutions, the hydrophobic pyrenyl labels induced the interactions of the PyCX-PAMAM-G0 dendrimers with the SDS and DTAB micelles.

View Article and Find Full Text PDF
Article Synopsis
  • PAMAM dendrimers, known for their structural versatility and customizable surfaces, are being investigated for biomedical uses, but their interactions with blood can disrupt normal clotting and pose health risks.
  • The study focused on how low-generation PAMAM dendrimers affect fibrin clot formation dynamics, including clot structure and resistance to breakdown, using various methods and blood samples.
  • Notably, certain dendrimers like G2-NH and G4-NH hindered clot formation and altered clot properties significantly, while G3.5-COOH showed minimal impact, suggesting it could be a safer option for medical applications.
View Article and Find Full Text PDF

Impact of nanoparticle properties on immune cell interactions in the lymph node.

Acta Biomater

December 2024

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia. Electronic address:

The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies.

View Article and Find Full Text PDF

Self-Assembled Peptide Sheet-Mediated Multivalent Capture of Cells with Enhanced Tunability.

Chembiochem

December 2024

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China.

We report the creation of multivalent ligand surfaces for cell capture by conjugation of ligand-appended 2D peptide assemblies on an antifouling glass substrate. The sheet-like structures organize ligands into non-uniform, patchy patterns, enhancing multivalent cell targeting. A 155 % increase in captured cells was achieved compared to the presentation of the ligands on surfaces lacking the peptide sheets.

View Article and Find Full Text PDF

Molecular interactions driving the complexation of rose bengal by triazine-carbosilane dendrons.

Nanoscale

December 2024

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!