Elementary process for CVD graphene on Cu(110): size-selective carbon clusters.

Sci Rep

1] Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore [2] Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.

Published: March 2014

Revealing the graphene growth mechanism at the atomic-scale is of great importance for achieving high quality graphene. However, the lack of direct experimental observation and density functional theory (DFT) verification hinders a comprehensive understanding of the structure of the carbon clusters and evolution of the graphene growth on surface. Here, we report an in-situ low-temperature scanning tunneling microscopy (LT-STM) study of the elementary process of chemical vapor deposition (CVD) graphene growth via thermal decomposition of methane on Cu(110), including the formation of monodispersed carbon clusters at the initial stage, the graphene nucleation and the ripening of graphene islands to form continuous graphene film. STM measurement, supported by DFT calculations, suggests that the carbon clusters on the surface are C2H5. It is found that graphene layers can be joined by different domains, with a relative misorientation of 30°. These graphene layers can be decoupled from Cu(110) through low temperature thermal cycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961735PMC
http://dx.doi.org/10.1038/srep04431DOI Listing

Publication Analysis

Top Keywords

carbon clusters
16
graphene growth
12
graphene
10
elementary process
8
cvd graphene
8
graphene layers
8
process cvd
4
graphene cu110
4
cu110 size-selective
4
carbon
4

Similar Publications

Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.

View Article and Find Full Text PDF

Comparative metagenomics reveals the metabolic flexibility of coastal prokaryotic microbiomes contributing to lignin degradation.

Biotechnol Biofuels Bioprod

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.

Coastal wetlands are rich in terrestrial organic carbon. Recent studies suggest that microbial consortia play a role in lignin degradation in coastal wetlands, where lignin turnover rates are likely underestimated. However, the metabolic potentials of these consortia remain elusive.

View Article and Find Full Text PDF

The synergistic reduction of air pollutants and carbon dioxide (CO) emissions is a key component in achieving China's strategy of pollution and carbon reduction. This study quantitatively evaluates the spatiotemporal linkages between PM and CO emissions, as well as the benefits of sustained synergistic control, across over 360 Chinese cities from 2005 to 2020. We employed spatiotemporal analysis, coupled coordinateness modeling, the Hurst index, and generalized linear mixed modeling (GLMM).

View Article and Find Full Text PDF

MUA-modified Au nanocluster-driven fluorescence sensor for chromatographic test strips-based visual detection of patulin.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

The relationship between human health and patulin (PAT) in the diet is a complex and intertwined one. The development of a sensing approach for the field detection of patulin is crucial, as the current approach lacks real-time detection capabilities and is costly in terms of material and technology. This paper presents a portable ratiometric fluorescence sensor that can be used to rapidly, accurately, and efficiently detect patulin in food items at the point of origin.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!