Branched-chain amino acid (BCAA) metabolism plays a central role in the pathophysiology of both rare inborn errors of metabolism and the more common multifactorial diseases. Although deficiency of the branched-chain ketoacid dehydrogenase (BCKDC) and associated elevations in the BCAAs and their ketoacids have been recognized as the cause of maple syrup urine disease (MSUD) for decades, treatment options for this disorder have been limited to dietary interventions. In recent years, the discovery of improved leucine tolerance after liver transplantation has resulted in a new therapeutic strategy for this disorder. Likewise, targeting the regulation of the BCKDC activity may be an alternative potential treatment strategy for MSUD. The regulation of the BCKDC by the branched-chain ketoacid dehydrogenase kinase has also been implicated in a new inborn error of metabolism characterized by autism, intellectual disability and seizures. Finally, there is a growing body of literature implicating BCAA metabolism in more common disorders such as the metabolic syndrome, cancer and hepatic disease. This review surveys the knowledge acquired on the topic over the past 50 years and focuses on recent developments in the field of BCAA metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170715 | PMC |
http://dx.doi.org/10.1093/hmg/ddu123 | DOI Listing |
Sci Rep
January 2025
Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Menstrual pain affects women's quality of life and productivity, yet objective molecular markers for its severity have not been established owing to the variability in blood levels and chemical properties of potential markers such as plasma steroid hormones, lipid mediators, and hydrophilic metabolites. To address this, we conducted a metabolomics study using five analytical methods to identify biomarkers that differentiate menstrual pain severity. This study included 20 women, divided into mild (N = 12) and severe (N = 8) pain groups based on their numerical pain rating scale.
View Article and Find Full Text PDFNutrients
January 2025
Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, Brazil.
Background: Few studies have evaluated the impact of branched-chain amino acid (BCAA) intake on the risk of obesity in adults. The results are contradictory, and the causality has not been explored. This study assessed the association between BCAA intake and obesity incidence among Brazilian adults and investigated the potential moderating role of the plant-based index (PDI) in this relationship.
View Article and Find Full Text PDFMetabolites
January 2025
Nestlé Health Science, 1000 Lausanne, Switzerland.
: Whey protein (WP) consumption prior to a meal curbs appetite and reduces postprandial glucose (PPG) through stimulating endogenous GLP-1 secretion and insulin. : We assessed the metabolic effects of a concentrated WP, using a new micelle-technology (WPM), in people with type 2 diabetes (T2D) and overweight or obesity (NCT04639726). In a randomized-crossover design, participants performed two 240 min lunch meal (622 kcal) tests 7 ± 4 days apart.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
Isoleucic acid (ILA) was identified in human patients with maple syrup urine disease (MSUD) half a century ago. MSUD patients, who are defective in the catabolism of branched-chain amino acids (BCAAs), that is, isoleucine, leucine, and valine, have urine with a unique maple syrup odour related to the accumulation of BCAA breakdown products, largely 2-keto acid derivatives and their reduced 2-hydroxy acids including ILA. A decade ago, ILA was identified in Arabidopsis thaliana.
View Article and Find Full Text PDFCommun Biol
January 2025
National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!