In contrast with the majority of substrates used to study cell adhesion, the natural extracellular matrix (ECM) is dynamic and remodeled over time. Here we use amphiphilic block copolymers to create self-assembled supported films with tunable lateral mobility. These films are intended to serve as partial mimics of the ECM in order to better understand cell adhesion responses, specifically in the context of dynamic substrates. Block copolymers are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion, and the addition of a trace hydrophobic homopolymer is used to control the film lateral mobility. We find that NIH 3T3 fibroblasts cultured on these biomimetic films exhibit non-linear spreading behavior in response to substrate mobility. In the absence of RGD ligands, however, fibroblasts do not spread. Employing quantitative analysis of focal adhesions (FA) and integrin ligation, we discover the presence of FA-dependent and FA-independent mechanisms responsible for the biphasic cell spreading behavior. The use of designed biomimetic platforms therefore yields insight into ECM mechanosensing by revealing that cells can engage distinct mechanisms to promote adhesion onto substrates with different time-dependent properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.02.052 | DOI Listing |
Bull Math Biol
January 2025
Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Tsing Hua University, Hsinchu, Taiwan.
Background: Abnormal brain inflammation is an important feature of Alzheimer's disease (AD). Central nervous system (CNS) inflammation is highly related to immune cell activation. Homeostasis of immune cell activity regulation is crucial for CNS autoimmune response.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: An increasing body of evidence has suggested that the pathogenesis of Alzheimer's disease (AD) is not confined to the neurons but instead that neuroinflammation plays a significant role in the disease, with an interplay between the brain and the immune system. So far, their shared genetic components have not been systematically studied.
Method: We investigated the shared genetic architecture between AD and a plethora of immune-mediated diseases using the genome-wide association studies (GWAS) summary statistics data: allergic rhinitis, asthma, atopic dermatitis, celiac disease, Crohn's disease, hypothyroidism, primary sclerosing cholangitis, RA, systemic lupus erythematosus, ulcerative colitis, and vitiligo.
Alzheimers Dement
December 2024
UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
Background: Small vessel disease (SVD) is a disorder of the brain's microvessels and a common cause of dementia and stroke. Evidence links normal ageing features to SVD progression, involving endothelial activation, pericyte dysfunction, BBB failure, and microglia response. Here, we aim to examine this relationship through a series of translational investigations.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!