Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo-derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2014.02.001 | DOI Listing |
Nanomedicine (Lond)
January 2025
Department of Chemistry, The University of Jordan, Amman, Jordan.
Aims: We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.
Materials & Methods: Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity.
Mol Divers
January 2025
Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Influenza is a highly contagious respiratory illness that imposes a significant global burden. Antiviral neuraminidase inhibitors (NAIs) such as oseltamivir (OC) have been proven essential, but the emergence of resistant viral strains necessitates the development of novel therapies. This study explored the potential of natural products as alternative NAIs.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
About one-fifth of people in industrialised countries are tattooed, potentially putting them at risk of exposure to possible carcinogenic or otherwise harmful substances. This study aims to determine the exposure to soluble tattoo ink ingredients and their excretion within 24 h after tattooing. In this clinical study, 24 subjects were tattooed with black or red tattoo ink to which the 3 tracer substances, potassium iodide, 4-aminobenzoic acid (PABA) and 2-phenoxyethanol (PEtOH), had been added to mimic known substances found in tattoo inks.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
Non-small cell lung cancer (NSCLC) is a widespread highly malignant type of lung cancer. Conventional chemotherapeutic drugs may be accompanied by both drug resistance and serious side effects in patients. Therefore, safer and more effective medications are urgently needed for the treatment of NSCLC.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Developing nanoscale platforms with high integration, assembly efficiency, and structural stability for performing complex computations in specific cells remains a significant challenge. To address this, the Three-dimensional Hierarchical Octahedral Robotic (THOR) DNA nanoplatform is introduced, which integrates targeting, logic computation, and sensing modules within a single framework. This nanoplatform specifically binds to cancer cell surface proteins, releasing aptamer-linked fuel chains to initiate subsequent computational processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!