Biogenic isoprene (2-methyl-1,3-butadiene) improves the integrity and functionality of thylakoid membranes and scavenges reactive oxygen species (ROS) in plant tissue under stress conditions. On the basis of available physiological studies, we hypothesized that the suppression of isoprene production in the poplar plant by genetic engineering would cause changes in the chloroplast protein pattern, which in turn would compensate for changes in chloroplast functionality and overall plant performance under abiotic stress. To test this hypothesis, we used a stable isotope-coded protein-labeling technique in conjunction with polyacrylamide gel electrophoresis and liquid chromatography tandem mass spectrometry. We analyzed quantitative and qualitative changes in the chloroplast proteome of isoprene-emitting and non isoprene-emitting poplars. Here we demonstrate that suppression of isoprene synthase by RNA interference resulted in decreased levels of chloroplast proteins involved in photosynthesis and increased levels of histones, ribosomal proteins, and proteins related to metabolism. Overall, our results show that the absence of isoprene triggers a rearrangement of the chloroplast protein profile to minimize the negative stress effects resulting from the absence of isoprene. The present data strongly support the idea that isoprene improves/stabilizes thylakoid membrane structure and interferes with the production of ROS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr401124zDOI Listing

Publication Analysis

Top Keywords

changes chloroplast
12
chloroplast proteome
8
suppression isoprene
8
chloroplast protein
8
absence isoprene
8
isoprene
7
chloroplast
6
genetic manipulation
4
manipulation isoprene
4
isoprene emissions
4

Similar Publications

Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.

Adv Biotechnol (Singap)

April 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.

View Article and Find Full Text PDF

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Organisms adapt to predictable environmental changes via a biological mechanism called priming. Phototropin (phot) is a plant-specific blue light photoreceptor that mediates daily light-induced responses, such as chloroplast relocation, stomatal opening, and phototropism, to optimize photosynthesis. Phot also functions as a thermosensor for chloroplast relocation that may sense daily temperature decreases at night, thereby modulating light-induced responses at dawn; however, this hypothesis has not yet been fully explored.

View Article and Find Full Text PDF

Chloroplast State Transitions Modulate Nuclear Genome Stability via Cytokinin Signaling in Arabidopsis.

Mol Plant

January 2025

Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:

Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.

View Article and Find Full Text PDF

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!