In this work, we synthesized water-soluble polyfluorene derivatives (WPFs) with anionic and/or cationic side chains, which were used as an indium tin oxide (ITO) cathode interfacial layer in inverted polymer solar cells. Three WPFs (WPFN+, WPFZW, and WPFS-) were obtained via Suzuki coupling reactions. Their solubility in polar solvents allowed the WPFs to be used as interfacial layers in inverted polymer solar cells (I-PSCs). Among the WPF-modified ITO electrodes, WPFN+ (with ammonium side chains)-modified ITO can be used as a cathode for electron extraction, while WPFS- (with sulfonate side chains)-modified ITO cannot extract electrons in I-PSCs based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM). The electron extraction of WPF-modified ITO can mainly be attributed to the different dipole formations at the WPF/ITO interfaces, based on the types of ionic groups on the side chains of the polyfluorene. In addition, we observed that the extent of ITO work-function modification was not always exactly correlated with the device performance based on the results obtained using a WPFZW (with ammonium and sulfonate side chains)-modified ITO electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am500708k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!