Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells.

ACS Appl Mater Interfaces

Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering and ‡Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea.

Published: May 2014

In this work, we synthesized water-soluble polyfluorene derivatives (WPFs) with anionic and/or cationic side chains, which were used as an indium tin oxide (ITO) cathode interfacial layer in inverted polymer solar cells. Three WPFs (WPFN+, WPFZW, and WPFS-) were obtained via Suzuki coupling reactions. Their solubility in polar solvents allowed the WPFs to be used as interfacial layers in inverted polymer solar cells (I-PSCs). Among the WPF-modified ITO electrodes, WPFN+ (with ammonium side chains)-modified ITO can be used as a cathode for electron extraction, while WPFS- (with sulfonate side chains)-modified ITO cannot extract electrons in I-PSCs based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM). The electron extraction of WPF-modified ITO can mainly be attributed to the different dipole formations at the WPF/ITO interfaces, based on the types of ionic groups on the side chains of the polyfluorene. In addition, we observed that the extent of ITO work-function modification was not always exactly correlated with the device performance based on the results obtained using a WPFZW (with ammonium and sulfonate side chains)-modified ITO electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am500708kDOI Listing

Publication Analysis

Top Keywords

inverted polymer
12
polymer solar
12
solar cells
12
side chains-modified
12
chains-modified ito
12
polyfluorene derivatives
8
cathode interfacial
8
interfacial layer
8
layer inverted
8
side chains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!