A local shear flow field was feasibly generated by pulling the ramie fiber in single fiber reinforced poly(lactic acid) (PLA) composites. This was featured by an ultrahigh shear gradient with a maximum shear rate up to 1500 s(-1), a level comparable to that frequently occurring during the practical polymer processing. To distinguish shear-induced self-nucleation and ramie fiber-induced heterogeneous nucleation, the shear history was classified by pulling the fiber for 5 s (pulled sample) and pulling out the fiber during 10 s (pulled-out sample), while the static fiber-induced crystallization was carried out as the counterpart. As a result of the ultrahigh shear gradient, the combination of primary shear-induced nucleation in the central region and secondary nucleation in the outer layer assembled the unique hierarchical superstructures. By comparing the architectural configurations of interphases formed in the static, pulled, and pulled-out samples, it was shown that the hierarchical cylindrites underwent the process of self-nucleation driven by the applied shear flow, very different from the formation of fiber-induced transcrystallinity (TC) triggered by the heterogeneous nucleating sites at the static fiber surface. The twisting of transcrystallized lamellae may take place due to the spatial hindrance induced by the incredibly dense nuclei under the intense shearing flow, as observed in the synchrotron X-ray diffraction patterns. The influence of chain characteristics on the crystalline morphology was further explored by adding a small amount of poly(ethylene glycol) (PEG) to enhance the molecular mobility of PLA. It was of interest to find that the existence of PEG not only facilitated the growth rates of TC and cylindrites but also improved the preferential orientation of PLA chains and thus expanded the ordered regions. We unearthed lamellar units that were composed of rich fibrillar extended chain crystals (diameter of 50-80 nm). These results are of importance to shed light on tailoring crystalline morphology for natural fibers reinforced green composite materials. Of immense practical significance, too, is the crystalline evolution that has been tracked in the simple model penetrated with an ultrahigh shear gradient, which researchers have so far been unable to replicate during the practical melt processing, such as extrusion and injection molding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm500100z | DOI Listing |
Small
February 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
The growing heat flow density from the miniaturization trend of electronic devices seriously challenges the heat diffusion in electronic systems. Consequently, there is an increasing demand for thermal management materials with both thermal conductivity (K) and material thickness (d) to effectively transfer devices' heat flux. Graphene films (GFs) with high K have attracted significant attention, but achieving both high K and large d remains challenging due to graphene's intrinsic properties and fabrication limitations.
View Article and Find Full Text PDFChemphyschem
February 2025
Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada.
Hydroxyanions and oxyanions can overcome electrostatic repulsion between like charges to form supramolecular architectures whose formation is driven by non-covalent interactions such as hydrogen bonds and halogen bonds (HaB). We report here a I solid-state nuclear magnetic resonance (SSNMR) study of a series of six organic periodates including compounds which feature I ⋅ ⋅ ⋅ O HaB between pairs of IO anions and control samples which do not feature HaB. I SSNMR spectra of powdered samples acquired under stationary conditions at 9.
View Article and Find Full Text PDFJ Pharm Sci
March 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States. Electronic address:
This work describes the first development of high-concentration suspension formulations of human immune globulin. Colloidal-level dispersions of immune globulin were achieved by suspending a spray dried solid powder of protein in a protein solution made saturated by the addition of pharmaceutical excipients. The spray drying process was used to generate ∼90 % of particles below 20μ.
View Article and Find Full Text PDFJ Chromatogr A
February 2025
Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninskiy Prospect, 119991 Moscow, Russia.
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!