A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drug delivery across the blood-brain barrier using focused ultrasound. | LitMetric

Drug delivery across the blood-brain barrier using focused ultrasound.

Expert Opin Drug Deliv

Sunnybrook Research Institute, Physical Sciences , 2075 Bayview Avenue, S665, Toronto, ON M4N 3M5 , Canada +1 416 480 5765 ;

Published: May 2014

Introduction: The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a noninvasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain.

Areas Covered: The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed.

Expert Opinion: The introduction of magnetic resonance imaging guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388327PMC
http://dx.doi.org/10.1517/17425247.2014.897693DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
blood-brain barrier
8
focused ultrasound
8
treatment brain
8
promote drug
8
delivery brain
8
brain
5
fus
5
drug
4
delivery blood-brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!