Despite famous serendipitous drug repositioning success stories, systematic projects have not yet delivered the expected results. However, repositioning technologies are gaining ground in different phases of routine drug development, together with new adaptive strategies. We demonstrate the power of the compound information pool, the ever-growing heterogeneous information repertoire of approved drugs and candidates as an invaluable catalyzer in this transition. Systematic, computational utilization of this information pool for candidates in early phases is an open research problem; we propose a novel application of the enrichment analysis statistical framework for fusion of this information pool, specifically for the prediction of indications. Pharmaceutical consequences are formulated for a systematic and continuous knowledge recycling strategy, utilizing this information pool throughout the drug-discovery pipeline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc.14.4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!