We demonstrate the design of a multifunctional organic layer by the rational combination of nanosized regions of two functional polymers. Instead of relying on a spontaneous and random phase separation process or on the tedious synthesis of block copolymers, the method involves the nanomolding of a first component, followed by the filling of the resulting open spaces by a second component. We apply this methodology to fabricate organic nonvolatile memory diodes of high density. These are built by first creating a regular array of ferroelectric nanodots by nanoimprint lithography, followed by the filling of the trenches separating the ferroelectric nanodots with a semiconducting polymer. The modulation of the current in the semiconductor by the polarization state of the ferroelectric material is demonstrated both at the scale of a single semiconductor channel and in a microscopic device measuring about 80,000 channels in parallel, for voltages below ca. 2 V. The fabrication process, which combines synergetically orthogonal functional properties with a fine control over their spatial distribution, is thus demonstrated to be efficient over large areas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn406503gDOI Listing

Publication Analysis

Top Keywords

design multifunctional
8
multifunctional organic
8
ferroelectric nanodots
8
nanoscale design
4
organic layers
4
layers low-power
4
low-power high-density
4
high-density memory
4
memory devices
4
devices demonstrate
4

Similar Publications

NUMB alternative splicing and isoform specific functions in development and disease.

J Biol Chem

January 2025

The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9. Electronic address:

The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!