Motion-induced blindness (MIB), the illusory disappearance of local targets against a moving mask, has been attributed to both low-level stimulus-based effects and high-level processes, involving selection between local and more global stimulus contexts. Prior work shows that MIB is modulated by binocular disparity-based depth-ordering cues. We assessed whether the depth effect is specific to disparity by studying how monocular 3-D surface from motion affects MIB. Monocular kinetic depth cues were used to create a global 3-D hourglass with concave and convex surfaces. MIB increased for stationary targets on the convex relative to the concave area, extending the role of 3-D cues. Interestingly, this convexity effect was limited to the left visual field--replicating spatial anisotropies in MIB. The data indicate a causal role of general 3-D surface coding in MIB, consistent with MIB being affected by high-level, visual representations.

Download full-text PDF

Source
http://dx.doi.org/10.1068/p7560DOI Listing

Publication Analysis

Top Keywords

role 3-d
8
motion-induced blindness
8
3-d surface
8
mib
7
3-d surface-from-motion
4
cues
4
surface-from-motion cues
4
cues motion-induced
4
blindness motion-induced
4
blindness mib
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!