The heparan sulfate sulfotransferase gene family catalyzes the transfer of sulfate groups to heparan sulfate and regulates various growth factor-receptor signaling pathways. However, the involvement of this gene family in cancer biology has not been elucidated. It was demonstrated that the heparan sulfate D-glucosaminyl 6--sulfotransferase-2 () gene is overexpressed in colorectal cancer (CRC) and its clinical significance in patients with CRC was investigated. The mRNA levels of in clinical CRC samples and various cancer cell lines were assessed using a microarray analysis and quantitative RT-PCR, respectively. An immunohistochemical (IHC) analysis of the HS6ST2 protein was performed using 102 surgical specimens of CRC. The correlations between the HS6ST2 expression status and clinicopathological characteristics were then evaluated. mRNA was significantly overexpressed by 37-fold in CRC samples compared to paired colonic mucosa. High levels of mRNA expression were also observed in colorectal, esophageal and lung cancer cell lines. The IHC analysis demonstrated that HS6ST2 was expressed in the cytoplasmic region of CRC cells, but not in normal colonic mucosal cells. Positive staining for HS6ST2 was detected in 40 patients (39.2%). There was no significant association between the clinicopathological characteristics and HS6ST2 expression. However, positive staining for HS6ST2 was associated with a poor survival (P=0.074, log-rank test). In conclusion, HS6ST2 was found to be overexpressed in CRC and its expression tended to be a poor prognostic factor, although the correlation was not significant. These findings indicate that may be a novel cancer-related marker that may provide insight into the glycobiology of CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915281PMC
http://dx.doi.org/10.3892/mco.2013.151DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
16
colorectal cancer
8
gene family
8
crc
8
crc samples
8
cancer cell
8
cell lines
8
ihc analysis
8
hs6st2 expression
8
clinicopathological characteristics
8

Similar Publications

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to examine recent advances in the understanding of injury-induced endotheliopathy and therapeutics to mitigate its development in critically injured patients.

Recent Findings: Clinical studies have clearly demonstrated that syndecan-1 ectodomains can be found in circulation after various types of trauma and injury and correlates with worse outcomes. As the mechanisms of endotheliopathy are better understood, pathologic hyperadhesive forms of von Willebrand factor, along with a relative deficiency of its cleaving enzyme, a disintegrin and metalloprotease with thrombospondin type I motifs, member 13 (ADAMTS13), have emerged as additional biomarkers.

View Article and Find Full Text PDF

Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!