A total of 10-20% of the population remains unresponsive or weakly responsive to hepatitis B vaccine, which is composed of hepatitis B surface antigen HBsAg (S protein). Therefore, it is necessary to develop a hepatitis B vaccine with a better penetrating and responsive rate. In the present study, a plasmid pVAX1-L-GM was constructed and its immunomodulatory effect of as hepatitis B virus (HBV) DNA vaccine was analyzed through the immunization of BALB/c mice. Immune responses were measured after immunization by anti-HBsAg, proliferation of splenocytes, the number of CD4 and CD8 molecules, CTL cytotoxicity, cytokines of IFN-γ and IL-2 secretion assays. Following the immunization, mice in the pVAX1-L-GM group produced antibody 2 weeks earlier compared to the control plasmid pVAX1 and pVAX1HBsAg groups and antibody levels showed significant differences. Enhanced HBsAg-specific splenocyte proliferation as well as specific cytotoxic activities of splenic CTLs were also detected. Furthermore, pVAX1-L-GM plasmid increased the number of CD4 and CD8 molecules on the surface of the spleen T cell and the level of IFN-γ, IL-2 secretion. pVAX1-L-GM induced a specific immune response in mice and enhanced the immune effect. Thus, a foundation was laid for developing immunogenicity of a better prevention and treatment of HBV via a hepatitis B vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956218 | PMC |
http://dx.doi.org/10.3892/br.2012.47 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!